Financial Markets and Fluctuations in Uncertainty

Cristina Arellano, Yan Bai, and Patrick Kehoe

March 2012

Motivation

Recent recession

- Output and labor drop, accounted for
 - Mainly by a worsening of labor wedge
 - Less by a fall in TFP
- ⇒ "Labor-wedge driven recession"

Popular story

- Increase in "uncertainty" at firm level
- Interacts with financial frictions
- ⇒ Firms shrink level of employment

This paper

Our goal

- Build a model to formalize gist of popular story
- Generate a labor-wedge driven recession quantitatively

Our formalization

- "Uncertainty shock"
 - Model as increase in volatility of firm idiosyncratic shocks
 - Quantify increase using dispersion of firms' growth rate
- Financial frictions
 - Model as uncontingent debt; allow costly default

Question

Can an increase in volatility of firms' idiosyncratic shocks that generates observed increase in firms' dispersion deliver

- Large contraction in output?
 - ▶ Yes: 67% of output drop
- Worsening of labor wedge?
 - Yes: 41% of labor wedge worsening

Key Elements in Model

- Firms produce before knowing current idiosyncratic demand shock
 - In high states 'too small' and in low states 'too big'
- Firms have limited ability to insure idiosyncratic shock
 - If scale too big, can't pay wage bill and might default
- Costly default
 - ▶ Liquidated, so lose future profits that are covering entry cost
- \Longrightarrow Labor wedge
 - Risk of default create a wedge between MPL and wage

Volatility shock generates labor-wedge driven recession

- Increase in volatility
 - ▶ Increases risk of default for a given scale
 - Induces firms to choose smaller scale
 - So increases wedge between MPL and wage

Literature

- Uncertainty shocks important for aggregates
 - ▶ Bloom (2008), Bloom, Floetotto, and Jaimovich (2010), Bachmann and Bayer (2009), Christiano, Motto, and Rostagno (2009)
- Firm heterogeneity and financial frictions
 - Cooley and Quadrini (2001), Gilchrist, Sim, and Zakrajsek (2010), Thomas and Khan (2011)
- Financial shocks
 - ▶ Jermann and Quadrini (2012), Guerrieri and Lorenzoni (2011)

Simple Example

Simple Example

Two points

- Complete financial markets
 - Constant labor wedge
 - lacktriangle Increased volatility ightarrow no effect on output or labor wedge
- Incomplete financial markets
 - Varying labor wedge
 - ▶ Increased volatility → output declines, labor wedge worsens

Simple Example

- Period 1:
 - Firms hire labor and produce before the demand shock z
 - ▶ Demand shock is realized; firms choose price *p* given demand function

$$y^d(p;z) = (z/p)^{\gamma} Y$$

- Firms are liquidated if dividend is negative
- Period 2:
 - Firms get future value V only if not liquidated

Complete financial markets

• End of period 1, given ℓ , firms choose price p

$$\pi(z;\ell) = \max_{p} \left\{ p y^{d}(p;z) - w\ell \right\}$$
$$y^{d}(p;z) \le \ell^{\theta}$$

- ullet Optimal to set $y^d(p;z)=\ell^ heta$ when $\gamma\geq 1$
- Price $p(z) = zY^{1/\gamma}\ell^{-\theta/\gamma}$

Complete financial markets

ullet Firms choose ℓ to maximize the expected value

$$\max_{\ell} \int_{0}^{\infty} \left[p(z) \ell^{\theta} - w\ell + V \right] f(z) dz$$

Optimal scale chosen to maximize short term profits

$$\underbrace{Ep(z)\theta\ell^{\theta-1}}_{\text{value }MPL} = \underbrace{\frac{\gamma}{(\gamma-1)}}_{\text{constant labor wedge}} w$$

- Use state-contingent debt to pay dividends and avoid liquidation
- ullet Increased volatility o no effect on output or labor wedge

Incomplete financial markets

- Firms are liquidated when demand shocks are low $(z < \hat{z})$
 - ▶ For each ℓ , \hat{z} is lowest z s.t. $p(z)\ell^{\theta} \ge w\ell$
- Firms choose (ℓ, \hat{z}) to maximize the expected value

$$\max_{\ell,\widehat{z}} \int_{\widehat{z}}^{\infty} \left[p(z) \ell^{\theta} - w \ell \right] f(z) dz + \int_{\widehat{z}}^{\infty} V f(z) dz$$

s.t

$$p(\widehat{z})\ell^{\theta} - w\ell = 0$$

Optimal scale chosen to maximize short term profits and future value

$$\underbrace{E[p(z)|z \geq \widehat{z}]\theta\ell^{\theta-1}}_{MPL} = \frac{\gamma}{(\gamma - 1)} \left[w + \underbrace{V \frac{f(\widehat{z})}{1 - F(\widehat{z})} \frac{d\widehat{z}}{d\ell}}_{Wedge} \right]$$

Increased volatility reduces labor and output and worsens labor wedge

Model

Our model

Dynamic general equilibrium model with

- Households (standard)
 - Provide labor
 - Sell uncontingent debt to firms
 - Own firms
- Final goods firms
 - Aggregate intermediate goods with CES aggregator
- Firms

Final Goods Firms

CES aggregator across goods x from measure of firms Y

$$Y = \left(\int z(x)y(x)^{\frac{\gamma-1}{\gamma}}dY(x)\right)^{\frac{\gamma}{\gamma-1}}$$

Yields a demand function

$$y(x) = \left(\frac{z(x)}{p(x)}\right)^{\gamma} Y$$

- Demand shocks
 - lacksquare Idiosyncratic shocks z with common stochastic volatility σ
 - ▶ Markov processes: $\pi_z(z_t|z_{t-1},\sigma_{t-1})$ and $\pi_\sigma(\sigma_t|\sigma_{t-1})$

Firms

- ullet Hire labor and produce $y=\ell^{ heta}$ before demand shock z
- Issue uncontingent debt b and can default on it
- Costly default
 - lacktriangle Pay a fixed cost ξ to start a business -> profits after entry are positive
 - ▶ If default, liquidated so lose positive PV of profits
- Dividends non-negative
- \bullet Aggregate state: $S=(\sigma,\, {
 m Y}),\, {
 m Y}$ is measure of firms over $(\ell,\, b,\, z)$

Firms

Maximize discounted value of dividends

$$d = p(z)\ell^{\theta} - w\ell - b + q(\ell', b'|z, S)b' \ge 0$$

- ullet Firms with high debt must default and set $\phi=0$
- ullet Generates bond price schedule $q(\ell',b'|z,S)$
 - Compensates for default risk
 - ▶ Different for each choice of ℓ' and b'
 - ▶ Implies borrowing limits $B(z, S) = \max_{\ell', b'} q(\ell', b'|z, S)b'$

Firms' problem

$$\begin{split} V(\ell,b,z,S) &= \max_{\{d,p,b',\ell'\}} d + \delta \sum_{z',\sigma'} Q\left(\sigma'|S\right) \pi_z(z'|z,\sigma) V(\ell',b',z',S') \\ d &= p\ell^{\theta} - w\ell - b + q(\ell',b'|z,S)b' \geq 0 \\ (z/p)^{\gamma}Y &= \ell^{\theta} \\ Y' &= G(S) \end{split}$$

- ullet Firms discount future more than consumer $(\delta < 1)$
 - Lower incentive for firms to self-insure
 - ▶ Reduced form: tax benefit of debt, other reasons why firms hold debt
 - Discipline quantitatively with average debt/sales

Firm Entry

New entrants

$$V^{\mathrm{e}}(S) = \max_{\ell_{\mathrm{e}}'} \ -\xi + \delta \sum_{z',\sigma'} Q(\sigma'|S) \pi_z^{\mathrm{e}}(z'|\sigma) V'(\ell_{\mathrm{e}}',\mathbf{0},z',S')$$

Enter if and only if $V^e(S) \ge 0$

Free entry condition implies positive expected value after entry

$$\delta \sum_{\mathbf{z}',\sigma'} Q(\sigma'|S) \pi_{\mathbf{z}}^{\mathbf{e}}(\mathbf{z}'|\sigma) V'(\ell_{\mathbf{e}}',\mathbf{0},\mathbf{z}',S') = \xi > 0$$

- ▶ Cost of default: Firm exits so loses expected value of future profits
- The measure of firms is time-varying

Bond Price

Compensates intermediaries for the loss in default

$$q(\ell',b'|z,S)b' = \sum_{z'.\sigma'} Q\left(\sigma\prime|S\right) \pi_z(z'|z,\sigma) \phi(\ell',b',z',S')b\prime$$

• Firms maintain a buffer stock of potential funds

$$B(z,S) - q(\ell',b'|z,S)b'$$

Households

 Provide employment at the beginning of period and consumption and assets after shocks

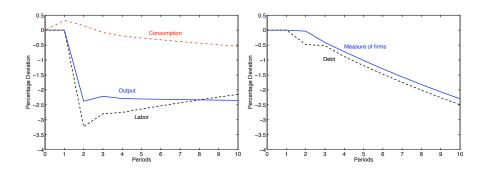
$$V_t^H = \max_{L_t} \left\{ \sum_{\sigma_t} \pi_{\sigma}(\sigma | \sigma_{-1}) \max_{C, \{A'(\sigma')\}} \left[U(C, L) + \beta V_{t+1}^H \right] \right\}$$

subject to their budget constraint

$$C + \sum_{\sigma'} Q(\sigma'|S)A'(\sigma') = wL + A(\sigma) + D - T$$

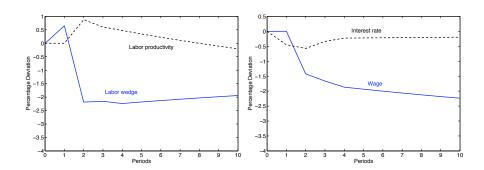
Experiments and Results

Quantifying volatility shocks

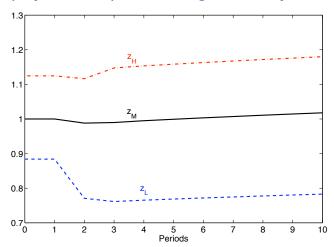

- Use cross-section firm dispersion to parameterize volatility shocks
- Firm dispersion:
 - ▶ Interquartile range of sales growth (differences between 75% and 25%)
- Parameter values: $\rho_z=$ 0.70, $\mu_\sigma=$ 0.18, $\rho_\sigma=$ 0.85

Other parameters

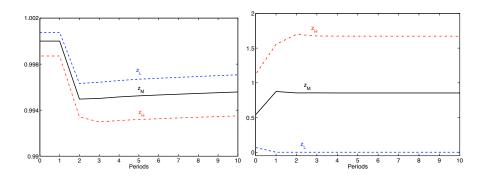
$$u(c, h) = \frac{C^{1-\rho}}{1-\rho} - \chi \frac{L^{1+\frac{1}{\nu}}}{1+\frac{1}{\nu}}$$


Labor elasticity	$\nu = 2$	Rogerson and Wallenius (2009)
Labor share	$\theta = 0.70$	U.S. National Accounts
Risk aversion	ho=2	Common value
Markup	$\gamma/(\gamma-1)=1.15$	Basu and Fernald (1997)
Discount for HH	eta=0.99	Interest rate 1%
Entry costs	ξ/\overline{y} = 0.32	BLS, entrants labor/total labor=1.7%
Death Shock	$\pi(z=z_0)=2.5\%$	U.S. failure rates
Discount for firms	δ = 0.7	liability/sales ratio (Compustat)

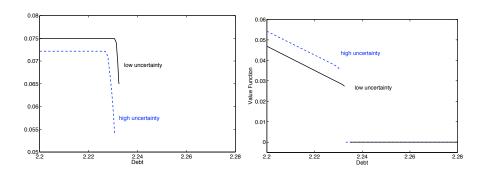
Aggregate impulse response to high volatility


• Labor falls more than output, measure of firms and debt fall

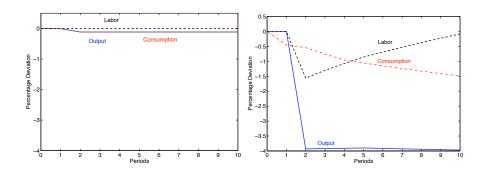
Aggregate impulse response to high volatility


- Labor wedge falls; productivity unchanged
- Wage falls; interest rate falls

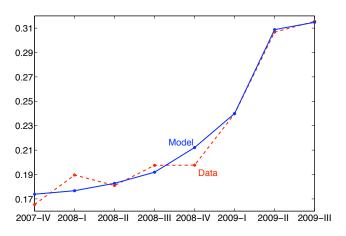
Firm employment response to high volatility


- z_M firms decreases employment
- z_L decreases a lot; z_H increases

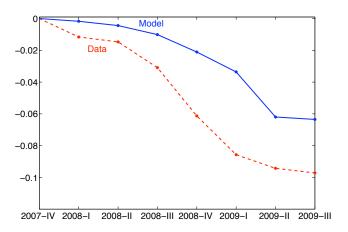
Firm debt response to high volatility


• Firm debt falls, buffer stock rises for most firms

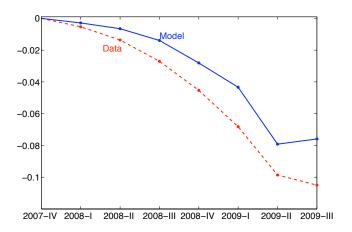
Firm employment and value functions


- Firms with high debt choose lower employment
- Default is due to liquidity problems

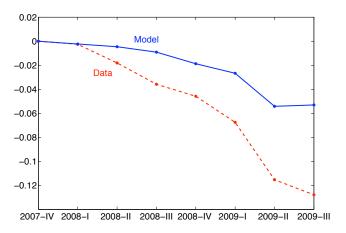
Aggregate impulse: Two reference models


- Financial frictions are essential
- Labor wedge results from financial frictions & volatility shocks

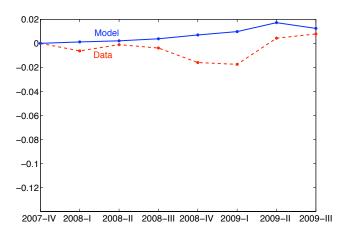
Experiment


 \bullet Choose sequence of σ_t to match observed IQR sales growth

Output


• Model output matches 67% of the output decline

Labor


• Model labor matches 73% of the labor decline

Labor wedge

Model can account for 41% of the worsening in the labor wedge

Productivity

Abstract from TFP variation

Business Cycles

	Data		Model	
	std(x)	$\frac{std(x)}{std(GDP)}$	Std(x)	$\frac{std(x)}{std(GDP)}$
GDP	3.2		2.4	
Labor	4.1	1.27	3.1	1.26
Consumption	2.7	0.83	1.2	0.48
Labor Wedge	5.4	1.69	2.3	0.95

- Volatility shocks can account for:
 - ▶ 75% of the variability of labor relative to output
 - ▶ 60% of the variability in the labor wedge relative to output

Conclusion

- Framework that combines volatility shocks with financial markets imperfections
- Generates movements in output, labor, and the labor wedge linked to financial frictions